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Summary. Probabilistic forecasts of continuous variables take the form of predictive densities
or predictive cumulative distribution functions. We propose a diagnostic approach to the evalu-
ation of predictive performance that is based on the paradigm of maximizing the sharpness of
the predictive distributions subject to calibration. Calibration refers to the statistical consistency
between the distributional forecasts and the observations and is a joint property of the predic-
tions and the events that materialize. Sharpness refers to the concentration of the predictive
distributions and is a property of the forecasts only. A simple theoretical framework allows us to
distinguish between probabilistic calibration, exceedance calibration and marginal calibration.
We propose and study tools for checking calibration and sharpness, among them the probabil-
ity integral transform histogram, marginal calibration plots, the sharpness diagram and proper
scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probab-
ilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest.
In combination with cross-validation or in the time series context, our proposal provides very
general, nonparametric alternatives to the use of information criteria for model diagnostics and
model selection.
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1. Introduction

A major human desire is to make forecasts for the future. Forecasts characterize and
reduce but generally do not eliminate uncertainty. Consequently, forecasts should be probab-
ilistic in nature, taking the form of probability distributions over future events (Dawid, 1984).
Indeed, over the past two decades the quest for good probabilistic forecasts has become a
driving force in meteorology (Gneiting and Raftery, 2005). Major economic forecasts such
as the quarterly Bank of England inflation report are issued in terms of predictive distribu-
tions (Granger, 2006), and the rapidly growing area of financial risk management is dedi-
cated to probabilistic forecasts of portfolio values (Duffie and Pan, 1997). In the statistical
literature, advances in Markov chain Monte Carlo methodology (see, for example, Besag
et al. (1995)) have led to explosive growth in the use of predictive distributions, mostly in
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the form of Monte Carlo samples from the posterior predictive distribution of quantities of
interest.

It is often critical to assess the predictive ability of forecasters, or to compare and rank com-
peting forecasting methods. Atmospheric scientists talk of forecast verification when they refer
to this process (Jolliffe and Stephenson, 2003), and much of the underlying methodology has
been developed by meteorologists. There is also a relevant strand of work in the econometrics
literature (Diebold and Mariano, 1995; Christoffersen, 1998; Diebold et al., 1998; Corradi and
Swanson, 2006). Murphy and Winkler (1987) proposed a general framework for the evalua-
tion of point forecasts that uses a diagnostic approach based on graphical displays, summary
measures and scoring rules. In this paper, we consider probabilistic forecasts (as opposed to
point forecasts) of continuous and mixed discrete–continuous variables, such as temperature,
wind speed, precipitation, gross domestic product, inflation rates and portfolio values. In this
situation, probabilistic forecasts take the form of predictive densities or predictive cumulative
distribution functions (CDFs), and the diagnostic approach faces a challenge, in that the fore-
casts take the form of probability distributions whereas the observations are real valued.

We employ the following, simple theoretical framework to provide guidance in methodologi-
cal work. At times or instances t =1, 2, . . . , nature chooses a distribution Gt , which we think of
as the true data-generating process, and the forecaster picks a probabilistic forecast in the form
of a predictive CDF Ft . The outcome xt is a random number with distribution Gt . Throughout,
we assume that nature is omniscient, in the sense that the forecaster’s basis of information is at
most that of nature. Hence, if

Ft =Gt for all t .1/

we talk of the ideal forecaster. In practice, the true distribution Gt remains hypothetical, and
the predictive distribution Ft is an expert opinion that may or may not derive from a statistical
prediction algorithm. In accordance with Dawid’s (1984) prequential principle, the predictive
distributions need to be assessed on the basis of the forecast–observation pairs .Ft , xt/ only,
regardless of their origins. Dawid (1984) and Diebold et al. (1998) proposed the use of the
probability integral transform (PIT) value,

pt =Ft.xt/, .2/

for doing this. If the forecasts are ideal and Ft is continuous, then pt has a uniform distribution.
Hence, the uniformity of the PIT is a necessary condition for the forecaster to be ideal, and
checks for its uniformity have formed a corner-stone of forecast evaluation. In the classical time
series framework, each Ft corresponds to a one-step-ahead forecast, and checks for the unifor-
mity of the PIT values have been supplemented by tests for independence (Frühwirth-Schnatter,
1996; Diebold et al., 1998).

Hamill (2001) gave a thought-provoking example of a forecaster for whom the histogram of
the PIT values is essentially uniform, even though every single probabilistic forecast is biased.
His example aimed to show that the uniformity of the PIT values is a necessary but not a suffi-
cient condition for the forecaster to be ideal. To fix the idea, we consider a simulation study
based on the scenario that is described in Table 1. At times or instances t =1, 2, . . . , nature draws
a standard normal random number μt and picks the data-generating distribution Gt =N .μt , 1/.
In the context of weather forecasts, we might think of μt as an accurate description of the
latest observable state of the atmosphere, summarizing all information that a forecaster might
possibly have access to. The ideal forecaster is an expert meteorologist who conditions on the
current state μt and issues an ideal probabilistic forecast, Ft = Gt . The climatological fore-
caster takes the unconditional distribution Ft =N .0, 2/ as probabilistic forecast. The unfocused
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Table 1. Scenario for the simulation study†

Forecaster Ft when nature picks Gt =N (μt , 1) where μt ∼N (0, 1)

Ideal N .μt , 1/
Climatological N .0, 2/

Unfocused
1
2

{N .μt , 1/+N .μt + τt , 1/} where τt =±1 with probability
1
2

each

Hamill’s N .μt + δt , σ2
t /

where .δt , σ2
t /=

(
1
2

, 1
)

,
(

−1
2

, 1
)

or
(

0,
169
100

)
with probability

1
3

each

†At times t =1, 2, . . . , 10000, nature picks a distribution Gt , and the forecaster chooses a probabil-
istic forecast Ft . The observations are independent random numbers xt with distribution Gt . We
write N .μ, σ2/ for the normal distribution with mean μ and variance σ2. The sequences .μt /t=1,2,:::,
.τt /t=1,2,::: and .δt , σ2

t /t=1,2,::: are independent identically distributed and independent of each other.

forecaster observes the current state μt but adds a mixture component to the forecast, which can
be interpreted as distributional bias. A similar comment applies to Hamill’s forecaster. Clearly,
our forecasters are caricatures; yet, climatological reference forecasts and conditional biases are
frequently observed in practice. The observation xt is a random draw from Gt , and we repeat the
prediction experiment 10000 times. Fig. 1 shows that the PIT histograms for the four forecasters
are essentially uniform.

In view of the reliance on the PIT in the literature, this is a disconcerting result. As Diebold
et al. (1998) pointed out, the ideal forecaster is preferred by all users, regardless of the respec-
tive loss function. Nevertheless, the PIT cannot distinguish between the ideal forecaster and her
competitors. To address these limitations, we propose a diagnostic approach to the evaluation of
predictive performance that is based on the paradigm of maximizing the sharpness ofthe predic-
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Fig. 1. PIT histograms for (a) the ideal forecaster, (b) the climatological forecaster, (c) the unfocused fore-
caster and (d) Hamill’s forecaster
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tive distributions subject to calibration. Calibration refers to the statistical consistency between
the distributional forecasts and the observations and is a joint property of the predictions and
the observed values. Sharpness refers to the concentration of the predictive distributions and
is a property of the forecasts only. The more concentrated the predictive distributions are, the
sharper the forecasts, and the sharper the better, subject to calibration.

The remainder of the paper is organized as follows. Section 2 develops our theoretical frame-
work for the assessment of predictive performance. We introduce the notions of probabilistic,
exceedance and marginal calibration, give examples and counter-examples, and discuss a conjec-
tured sharpness principle. In Section 3, we propose diagnostic tools such as marginal calibration
plots and sharpness diagrams that complement the PIT histogram. Proper scoring rules address
calibration as well as sharpness and allow us to rank competing forecast procedures. Section 4
turns to a case-study on probabilistic forecasts at the Stateline wind energy centre in the US
Pacific Northwest. The diagnostic approach yields a clear-cut ranking of statistical algorithms
for forecasts of wind speed and suggests improvements that can be addressed in future research.
Similar approaches hold considerable promise as very general non-parametric tools for statis-
tical model selection and model diagnostics. The paper closes with a discussion in Section 5
that emphasizes the need for routine assessments of sharpness in the evaluation of predictive
performance.

2. Modes of calibration

Our theoretical framework is as follows. At times or instances t =1, 2, . . . , nature picks a prob-
ability distribution Gt , and the forecaster chooses a probabilistic forecast in the form of a pre-
dictive distribution Ft . The observation xt is a random draw from nature’s proposal distribution
Gt . Throughout, we assume that nature is omniscient, in the sense that the basis of information
of the forecaster is at most that of nature. For simplicity, we assume that Ft and Gt are continu-
ous and strictly increasing on R. Evidently, Gt is not observed in practice, and any operational
evaluation needs to be performed on the basis of the forecasts Ft and the outcomes xt only.

In comparing forecasters, we take the pragmatic standpoint of a user who is to rank and
choose between a number of competitors, as exemplified in the case-study in Section 4. In this
type of situation, it is absolute performance that matters, rather than relative performance that
may result from the use of possibly distinct bases of information.

Our approach seems slightly broader than Dawid’s (1984) prequential framework, in that
we think of .Ft/t=1,2,::: as a general countable sequence of forecasts, with the index referring to
time, space and/or subjects, depending on the prediction problem at hand. The forecasts need
not be sequential and, when Ft+1 is issued, xt may or may not be available yet.

2.1. Probabilistic calibration, exceedance calibration and marginal calibration
Henceforth, .Ft/t=1,2,::: and .Gt/t=1,2,::: denote sequences of continuous and strictly increas-
ing CDFs, possibly depending on stochastic parameters. We think of .Gt/t=1,2,::: as the true
data-generating process and of .Ft/t=1,2,::: as the associated sequence of probabilistic forecasts.
The following definition refers to the asymptotic compatibility between the data-generating
process and the predictive distributions in terms of three major modes of calibration. Given
that .Ft/t=1,2,::: and .Gt/t=1,2,::: might depend on stochastic parameters, convergence is under-
stood as almost sure convergence, as T → ∞, and is denoted by an arrow. For now, these
notions are of theoretical interest only; in Section 3, they lend support to our methodological
proposals.
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Definition 1 (modes of calibration).

(a) The sequence .Ft/t=1, 2,::: is probabilistically calibrated relative to the sequence .Gt/t=1,2,:::
if

1
T

T∑
t=1

Gt ◦F−1
t .p/→p for all p∈ .0, 1/: .3/

(b) The sequence .Ft/t=1,2,::: is exceedance calibrated relative to .Gt/t=1,2,::: if

1
T

T∑
t=1

G−1
t ◦Ft.x/→x for all x∈R: .4/

(c) The sequence .Ft/t=1,2,::: is marginally calibrated relative to .Gt/t=1,2,::: if the limits

Ḡ.x/= lim
T→∞

{
1
T

T∑
t=1

Gt.x/

}

and

F̄ .x/= lim
T→∞

{
1
T

T∑
t=1

Ft.x/

}

exist and equal each other for all x ∈ R, and if the common limit distribution places all
mass on finite values.

(d) The sequence .Ft/t=1,2,::: is strongly calibrated relative to .Gt/t=1,2,::: if it is probabilistic-
ally calibrated, exceedance calibrated and marginally calibrated.

If each subsequence of .Ft/t=1,2,::: is probabilistically calibrated relative to the associated
subsequence of .Gt/t=1,2,:::, we talk of complete probabilistic calibration. Similarly, we define
completeness for exceedance, marginal and strong calibration. Probabilistic calibration is essen-
tially equivalent to the uniformity of the PIT values. Exceedance calibration is defined in terms
of thresholds, and marginal calibration requires that the limit distributions Ḡ and F̄ exist and
equal each other. The existence of Ḡ is a natural assumption in meteorological problems and
corresponds to the existence of a stable climate. Hence, marginal calibration can be interpreted
in terms of the equality of observed and forecast climatology.

Various researchers have studied calibration in the context of probability forecasts for seq-
uences of binary events (DeGroot and Fienberg, 1982; Dawid, 1982, 1985a, b; Oakes, 1985;
Schervish, 1985, 1989; Dawid and Vovk, 1999; Shafer and Vovk, 2001; Sandroni et al., 2003).
The progress is impressive and culminates in the elegant game theoretic approach of Vovk and
Shafer (2005). This views forecasting as a game, with three players: forecaster, sceptic and reality
or nature. Forecaster and sceptic have opposite goals, and one of them wins, whereas the other
loses. No goal is assigned to nature, who directly chooses and reveals the outcome xt , without
recourse to any underlying data-generating distribution. The key question in this deep strand of
literature, which culminates in theorem 3 of Vovk and Shafer (2005), is that of the existence of
certain types of strategy for the forecaster. Shafer and Vovk considered probability forecasts for
dichotomous events, rather than distributional forecasts of real-valued quantities, and they did
not consider the problem that is tackled here, namely the comparative evaluation of competing
forecasters, for which they hint at future work (Shafer and Vovk (2001), page 50).

Krzysztofowicz (1999) discussed calibration in the context of Bayesian forecasting systems,
and Krzysztofowicz and Sigrest (1999) studied calibration for quantile forecasts of quantitative
precipitation. We are unaware of any prior discussion of notions of calibration for probabilistic
forecasts of continuous variables.
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2.2. Examples
The examples in this section illustrate the aforementioned modes of calibration and discuss
some of the forecasters in our initial simulation study. Throughout, .μt/t=1,2,:::, .σt/t=1,2,::: and
.τt/t=1,2,::: denote independent sequences of independent identically distributed random vari-
ables. We write N .μ, σ2/ for the normal distribution with mean μ and variance σ2, identify
distributions and CDFs, and let Φ denote the standard normal CDF. In each example, nature
draws a random number μt ∼N .0, 1/ that corresponds to the basis of information at time t and
picks the data-generating distribution Gt =N .μt , 1/. We recall that convergence is understood
as almost sure convergence, as T →∞, with respect to the law of the aforementioned sequences.

2.2.1. Example 1 (ideal forecaster)
The predictive distribution of the ideal forecaster equals nature’s proposal distribution, i.e.
Ft =Gt =N .μt , 1/ for all t. This forecaster is strongly calibrated.

2.2.2. Example 2 (climatological forecaster)
The climatological forecaster issues the distributional forecast Ft = N .0, 2/, regardless of t.
This forecaster is probabilistically calibrated and marginally calibrated, as can be seen by using
arguments based on densities. However,

1
T

T∑
t=1

G−1
t ◦Ft.x/= 1

T

T∑
t=1

[
Φ−1

{
Φ
(

x√
2

)}
+μt

]
→ x√

2

for x∈R, in violation of exceedance calibration.

The characteristic property in example 2 is that each predictive distribution Ft equals nature’s
limiting marginal distribution Ḡ. We call any forecaster with this property a climatological fore-
caster. For climatological forecasts, probabilistic calibration is essentially equivalent to marginal
calibration. Indeed, if Ḡ is continuous and strictly increasing, then putting p=Ft.x/= Ḡ.x/ in
expression (3) recovers the marginal calibration condition. In practice, climatological forecasts
are constructed from historical records of observations, and they are often used as reference
forecasts.

2.2.3. Example 3 (unfocused forecaster)
The predictive distribution of the unfocused forecaster is the mixture distribution

Ft = 1
2{N .μt , 1/+N .μt + τt , 1/},

where τt is either 1 or −1, with equal probabilities, and independent of μt . This forecaster
is probabilistically calibrated, but neither exceedance calibrated nor marginally calibrated. To
prove the claim for probabilistic calibration, put Φ±.x/= 1

2{Φ.x/+Φ.x∓1/} and note that

1
T

T∑
t=1

Gt ◦F−1
t .p/→ 1

2
{Φ◦Φ−1

+ .p/+Φ◦Φ−1
− .p/}=p,

where the equality follows on putting p=Φ+.x/, substituting and simplifying. Exceedance cal-
ibration does not hold, because

1
T

T∑
t=1

G−1
t ◦Ft.x/→ 1

2
{Φ−1 ◦Φ+.x/+Φ−1 ◦Φ−.x/} 	=x
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Table 2. The three major modes of calibration are logically
independent of each other and may occur in any combination†

Properties Example

PEM Example 1 (ideal forecaster)
PEM̄ Gt =Ft =N .t, 1/

PĒM Example 2 (climatological forecaster)
PĒM̄ Example 3 (unfocused forecaster)
P̄EM̄ Example 4 (mean-biased forecaster)
P̄EM Example 5 (sign-biased forecaster)
P̄ĒM Example 6 (mixed forecaster)
P̄ĒM̄ Gt =N .0, 1/, Ft =N .1, 1/

†For instance, the unfocused forecaster in example 3 is probabil-
istically calibrated (P), but neither exceedance calibrated (Ē) nor
marginally calibrated (P̄).

in general. The marginal calibration condition is violated, because nature’s limit distribution,
Ḡ=N .0, 2/, does not equal F̄ = 1

2N .0, 2/+ 1
4N .−1, 2/+ 1

4N .1, 2/.

2.2.4 Example 4 (mean-biased forecaster)
The mean-biased forecaster issues the probabilistic forecast Ft =N .μt + τt , 1/, where, again, τt

is either 1 or −1, with equal probabilities, and independent of μt . The mean-biased forecaster
is exceedance calibrated, but neither probabilistically calibrated nor marginally calibrated.

2.2.5 Example 5 (sign-biased forecaster)
The predictive distribution of the sign-biased forecaster is Ft = N .−μt , 1/. This forecaster is
exceedance calibrated and marginally calibrated, but not probabilistically calibrated.

2.2.6 Example 6 (mixed forecaster)
The mixed forecaster randomizes between the climatological and the sign-biased forecast, with
equal probabilities and independent of μt . This forecaster is marginally calibrated, but neither
probabilistically calibrated nor exceedance calibrated.

The examples in this section show that probabilistic calibration, exceedance calibration and
marginal calibration are logically independent of each other and may occur in any combination.
Table 2 summarizes these results.

2.3. Hamill’s forecaster
We add a discussion of Hamill’s forecaster. As previously, nature picks Gt =N .μt , 1/, where
μt is a standard normal random number. Hamill’s forecaster is a master forecaster who assigns
the prediction task with equal probability to any of three student forecasters, each of whom is
biased, as described in Table 1. For Hamill’s forecaster,

1
T

T∑
t=1

Gt ◦F−1
t .p/→ 1

3

[
Φ
{

Φ−1.p/− 1
2

}
+Φ

{
13
10

Φ−1.p/

}
+Φ

{
Φ−1.p/+ 1

2

}]
=p+ ".p/,
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where |".p/|� 0:0032 for all p but ".p/ 	= 0 in general. The probabilistic calibration condition
(3) is violated, but only slightly so, resulting in deceptively uniform PIT histograms. As for
exceedance calibration, we note that

1
T

T∑
t=1

G−1
t ◦Ft.p/→ 1

3

{(
x+ 1

2

)
+ 10

13
x+
(

x− 1
2

)}
= 12

13
x

for x ∈ R. Hence, Hamill’s forecaster is not exceedance calibrated either, nor marginally cali-
brated, given that Ḡ=N .0, 2/ and F̄ = 1

3{N .− 1
2 , 2/+N . 1

2 , 2/+N .0, 269=100/}.

2.4. Sharpness principle
In view of our assumption that the forecaster’s basis of information is at most that of nature, the
best situation that we can possibly hope for is the equality (1) of Ft and Gt that characterizes
the ideal forecaster. Operationally, we adopt the paradigm of maximizing the sharpness of the
predictive distributions subject to calibration. Our conjectured sharpness principle contends
that the two goals—ideal forecasts and the maximization of sharpness subject to calibration—
are equivalent. This conjectured equivalence, which we deliberately state loosely, could be ex-
plained in two ways. One explanation is that sufficiently stark notions of calibration, such as
complete strong calibration across many dynamic subsequences, imply asymptotic equivalence
to the ideal forecaster. Strong calibration alone, without the completeness condition, does not
seem to impose enough restrictions, but we are unaware of a counter-example and would like
to know of one. An alternative and weaker explanation states that any sufficiently calibrated
forecaster is at least as spread out as the ideal forecaster.

With respect to this latter explanation, none of probabilistic, exceedance or marginal cal-
ibration alone is sufficiently stark. In the examples below it will be convenient to consider a
probabilistic calibration condition,

1
T

T∑
t=1

Gt ◦F−1
t .p/=p for all p∈ .0, 1/, .5/

for finite sequences .Ft/1�t�T relative to .Gt/1�t�T , and similarly for exceedance calibration
and marginal calibration. The examples extend to countable sequences in obvious ways. Now
suppose that σ > 0, a > 1, 0 < λ < 1=a and T = 2. Let G1 and G2 be continuous and strictly
increasing CDFs with associated densities that are symmetric about zero and have finite vari-
ances, var.G1/=σ2 and var.G2/=λσ2. If we define

F1.x/= 1
2

{
G1.x/+G2

(x

a

)}
,

F2.x/=F1.ax/,

then

var.F1/+var.F2/= 1
2

(
1+ 1

a2

)
.1+a2λ2/σ2 <.1+λ2/σ2 =var.G1/+var.G2/,

even though the finite probabilistic calibration condition (5) holds. A similar example can be
given for exceedance calibration. Suppose that σ > 0, 0 <a< 1 and

0 <λ<a

(
3+a

1+3a

)1=2

:
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Let G1 and G2 be as above and define

F1.x/=G1

(
2x

1+a

)
,

F2.x/=G2

(
2ax

1+a

)
:

Then

var.F1/+var.F2/= 1
4

.1+a/2

(
1+ λ2

a2

)
σ2 <.1+λ2/σ2 =var.G1/+var.G2/,

even though the finite exceedance calibration condition holds. Evidently, a forecaster can be
marginally calibrated yet sharper than the ideal forecaster.

For climatological forecasts, finite probabilistic calibration and finite marginal calibration
are equivalent, and a weak type of the sharpness principle holds, in the form of a lower bound
on the variance of the predictive distribution.

Theorem 1. Suppose that G1, . . . , GT and F1 = . . .=FT =F have second moments and satisfy
the finite probabilistic calibration condition (5). Then

1
T

T∑
t=1

var.Ft/=var.F/� 1
T

T∑
t=1

var.Gt/

with equality if and only if E.G1/= . . .=E.GT /.

The proof of theorem 1 is given in Appendix A. We are unaware of any other results in
this direction; in particular, we do not know whether a non-climatological forecaster can be
probabilistically calibrated and marginally calibrated yet sharper than the ideal forecaster.

3. Diagnostic tools

We now discuss diagnostic tools for the evaluation of predictive performance. In accordance
with Dawid’s (1984) prequential principle, the assessment of probabilistic forecasts needs to be
based on the predictive distributions and the observations only. Previously, we defined notions
of calibration in terms of the asymptotic consistency between the probabilistic forecasts and
the data-generating distributions, which are hypothetical in practice. Hence, we turn to sample
versions, by substituting empirical distribution functions based on the outcomes. The resulting
methodological tools stand in their own right; however, our theoretical framework lends support
and reassurance. In what follows, this programme is carried out for probabilistic calibration and
marginal calibration. Exceedance calibration does not allow for an obvious sample analogue,
and it is not clear whether such an analogue exists. We discuss graphical displays of sharp-
ness and propose the use of proper scoring rules that assign numerical measures of predictive
performance and find key applications in the ranking of competing forecast procedures.

3.1. Assessing probabilistic calibration
The PIT is the value that the predictive CDF attains at the observation. Specifically, if Ft is
the predictive distribution and xt materializes, the transform is defined as pt =Ft.xt/. The lit-
erature usually refers to Rosenblatt (1952), although the PIT can be traced back at least to
Pearson (1933). The connection to probabilistic calibration is established by substituting the
empirical distribution function 1.xt � x/ for the data-generating distribution Gt.x/, x ∈ R, in
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the probabilistic calibration condition (3), and noting that xt � F−1
t .p/ if and only if pt � p.

The following theorem characterizes the asymptotic uniformity of the empirical sequence of
PIT values in terms of probabilistic calibration. We state this result under the assumption of a
‘Å-mixing’ sequence of observations (Blum et al., 1963). The proof is deferred to Appendix A.

Theorem 2. Let .Ft/t=1,2,::: and .Gt/t=1,2,::: be sequences of continuous, strictly increasing
distribution functions. Suppose that xt has distribution Gt and that the xt form a ‘Å-mixing’
sequence of random variables. Then

1
T

T∑
t=1

1.pt �p/→p almost surely for all p .6/

if and only if .Ft/t=1,2,::: is probabilistically calibrated with respect to .Gt/t=1,2,:::.

We emphasize that condition (6) stands in its own right as a criterion for the validity of probab-
ilistic forecasts, independently of our theoretical framework, in which it is interpreted as a sample
version of condition (3). Indeed, following the lead of Dawid (1984) and Diebold et al. (1998),
checks for the uniformity of the PIT values have formed a corner-stone of forecast evaluation.

Uniformity is usually assessed in an exploratory sense, and one way of doing this is by plotting
the empirical CDF of the PIT values and comparing it with the CDF of the uniform distribution.
This approach is adequate for small sample sizes and notable departures from uniformity, and
its proponents include Staël von Holstein (1970), page 142, Seillier-Moiseiwitsch (1993), Hoet-
ing (1994), page 33, Brocklehurst and Littlewood (1995), Frühwirth-Schnatter (1996), Raftery
et al. (1997), Clements and Smith (2000), Moyeed and Papritz (2002), Wallis (2003) and Boero
and Marrocu (2004). Histograms of the PIT values accentuate departures from uniformity when
the sample size is large and the deviations from uniformity are small. This alternative type of
display has been used by Diebold et al. (1998), Weigend and Shi (2000), Bauwens et al. (2004)
and Gneiting et al. (2005), among others, and 10 or 20 histogram bins generally seem adequate.
Fig. 1 employs 20 bins and shows the PIT histograms for the various forecasters in our initial
simulation study. The histograms are essentially uniform. Table 3 shows the empirical coverage
of the associated central 50% and 90% prediction intervals. This information is redundant, since
the empirical coverage can be read off the PIT histogram, as the area under the 10 and 18 central
bins respectively.

Probabilistic weather forecasts are typically based on ensemble prediction systems, which
generate a set of perturbations of the best estimate of the current state of the atmosphere,

Table 3. Empirical coverage of central pre-
diction intervals in the simulation study†

Forecaster Coverage (%) for the
following intervals:

50% 90%

Ideal 51.2 90.0
Climatological 51.3 90.7
Unfocused 50.1 90.1
Hamill’s 50.9 89.5

†The nominal coverage is 50% and 90%.
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run each of them forwards in time by using a numerical weather prediction model and use the
resulting set of forecasts as a sample from the predictive distribution of future weather quantities
(Palmer, 2002; Gneiting and Raftery, 2005). The principal device for assessing the calibration
of ensemble forecasts is the verification rank histogram or Talagrand diagram, which was pro-
posed independently by Anderson (1996), Hamill and Colucci (1997) and Talagrand et al. (1997)
and has been extensively used since. To obtain a verification rank histogram, find the rank of
the observation when pooled within the ordered ensemble values and plot the histogram of the
ranks. If we identify the predictive distribution with the empirical CDF of the ensemble values,
this technique is seen to be analogous to plotting a PIT histogram. A similar procedure could
be drawn on fruitfully to assess samples from posterior predictive distributions obtained by
Markov chain Monte Carlo techniques. Shephard (1994), page 129, gave an instructive example
of how this could be done.

Visual inspection of a PIT or rank histogram can provide hints to the reasons for fore-
cast deficiency. Hump-shaped histograms indicate overdispersed predictive distributions with
prediction intervals that are too wide on average. U-shaped histograms often correspond to
predictive distributions that are too narrow. Triangle-shaped histograms are seen when the pre-
dictive distributions are biased. Formal tests of uniformity can be employed and have been
studied by Anderson (1996), Talagrand et al. (1997), Noceti et al. (2003), Garratt et al. (2003),
Wallis (2003), Candille and Talagrand (2005) and Corradi and Swanson (2006), among others.
However, the use of formal tests is often hindered by complex dependence structures, particu-
larly in cases in which the PIT values are spatially aggregated. Hamill (2001) gave a thoughtful
discussion of the associated issues and potential fallacies.

In the time series context, the observations are sequential, and the predictive distributions
correspond to sequential k-step-ahead forecasts. The case-study in Section 4 provides an exam-
ple in which k = 2. The PITs for ideal k-step-ahead forecasts are at most k − 1 dependent, and
this assumption can be checked empirically, by plotting the sample autocorrelation functions
for the PIT values and their moments (Diebold et al., 1998). Smith (1985), Frühwirth-Schnatter
(1996) and Berkowitz (2001) proposed an assessment of independence based on the transformed
PIT values Φ−1.pt/, which are Gaussian under the assumption of ideal forecasts. This further
transformation has obvious advantages when formal tests of independence are employed and
seems to make little difference otherwise.

3.2. Assessing marginal calibration
Marginal calibration concerns the equality of forecast climate and actual climate. To assess
marginal calibration, we propose a comparison of the average predictive CDF,

F̄ T .x/= 1
T

T∑
t=1

Ft.x/, x∈R, .7/

with the empirical CDF of the observations,

ĜT .x/= 1
T

T∑
t=1

1.xt �x/, x∈R: .8/

Indeed, if we substitute the indicator function 1.xt � x/ for the data-generating distribution
Gt.x/, x∈R, in the definition of marginal calibration, we are led to the asymptotic equality of
F̄ T and ĜT . Theorem 3 provides a rigorous version of this correspondence. Under mild regu-
larity conditions, marginal calibration is a necessary and sufficient condition for the asymptotic
equality of ĜT and F̄ T . The proof of this result is deferred to Appendix A.
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Theorem 3. Let .Ft/t=1,2,::: and .Gt/t=1,2,::: be sequences of continuous, strictly increasing dis-
tribution functions. Suppose that each xt has distribution Gt and that the xt form a ‘Å-mixing’
sequence of random variables. Suppose furthermore that

F̄ .x/= lim
T→∞

{
1
T

T∑
t=1

Ft.x/

}

exists for all x∈R and that the limit function is strictly increasing on R. Then

ĜT .x/= 1
T

T∑
t=1

1.xt �x/→ F̄ .x/ almost surely for all x∈R .9/

if and only if .Ft/t=1,2,::: is marginally calibrated with respect to .Gt/t=1,2,:::.

We note that condition (9) stands in its own right as a criterion for the validity of probabilistic
forecasts, independently of our theoretical framework. Still, the theoretical frame and theorems
2 and 3 provide reassurance, in that conditions (6) and (9) will be satisfied almost surely if the
forecaster issues the same sequence of distributions that nature uses to generate the outcomes,
assuming mixing conditions. These results are also of interest because they characterize situa-
tions under which conditions (6) and (9) lead us to accept as valid forecasts that might in fact
be far from ideal.

The most obvious graphical device in the assessment of marginal calibration is a plot of ĜT .x/

and F̄ T .x/ versus x. However, it is often more instructive to plot the difference of the two CDFs,
as in Fig. 2(a), which shows the difference

F̄ T .x/− ĜT .x/, x∈R, .10/

for the various forecasters in our initial simulation study. We call this type of display a marginal
calibration plot. Under the hypothesis of marginal calibration, we expect minor fluctuations
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Fig. 2. Marginal calibration plot for the ideal forecaster ( ), climatological forecaster (- - - - - - -), un-
focused forecaster (� - � - � -) and Hamill’s forecaster (– – –): (a) CDFs; (b) quantiles
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about 0 only, and this is indeed so for the ideal forecaster and the climatological forecaster.
The unfocused forecaster and Hamill’s forecaster lack marginal calibration, resulting in major
excursions from 0. The same information can be visualized in terms of quantiles, as in Fig. 2(b),
which shows the difference

Q.F̄T , q/−Q.ĜT , q/, q∈ .0, 1/, .11/

of the quantile functions for F̄ T and ĜT . Under the hypothesis of marginal calibration, we again
expect minor fluctuations about 0 only, and this is so for the ideal forecaster and the climato-
logical forecaster. The unfocused forecaster and Hamill’s forecaster show quantile difference
functions that increase from negative to positive values, indicating forecast climates that are too
spread out.

3.3. Assessing sharpness
Sharpness refers to the concentration of the predictive distributions and is a property of the
forecasts only. The more concentrated the predictive distributions, the sharper the forecasts,
and the sharper the better, subject to calibration. To assess sharpness, we use numerical and
graphical summaries of the width of prediction intervals. For instance, Table 4 shows the average
width of the central 50% and 90% prediction intervals for the forecasters in our initial simu-
lation study. The ideal forecaster is the sharpest, followed by Hamill’s, the unfocused and the
climatological forecaster. In our simplistic simulation study, the width of the prediction intervals
is fixed, except for Hamill’s forecaster, and the tabulation is perfectly adequate. In real world
applications, conditional heteroscedasticity often leads to considerable variability in the width
of the prediction intervals. The average width then is insufficient to characterize sharpness, and
we follow Bremnes (2004) in proposing box plots as a more instructive graphical device. We
refer to this type of display as a sharpness diagram, and an example thereof is shown in Fig. 9
in Section 4.3.

3.4. Proper scoring rules
Scoring rules assign numerical scores to probabilistic forecasts and form attractive summary
measures of predictive performance, in that they address calibration and sharpness simulta-
neously. We write s.F , x/ for the score that is assigned when the forecaster issues the predictive
distribution F and x materializes, and we take scores to be penalties that the forecaster wishes to
minimize. A scoring rule is proper if the expected value of the penalty s.F , x/ for an observation

Table 4. Average width of central prediction
intervals in the simulation study†

Forecaster Average width for
the following intervals:

50% 90%

Ideal 1.35 3.29
Climatological 1.91 4.65
Unfocused 1.52 3.68
Hamill’s 1.49 3.62

†The nominal coverage is 50% and 90%.
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x drawn from G is minimized if F =G. It is strictly proper if the minimum is unique. Winkler
(1977) gave an interesting discussion of the ways in which proper scoring rules encourage honest
and sharp forecasts.

The logarithmic score is the negative of the logarithm of the predictive density evaluated
at the observation (Good, 1952; Bernardo, 1979). This scoring rule is proper and has many
desirable properties (Roulston and Smith, 2002), but it lacks robustness (Selten, 1998; Gneiting
and Raftery, 2006). The continuous ranked probability score is defined directly in terms of the
predictive CDF F as

crps.F , x/=
∫ ∞

−∞
{F.y/−1.y �x/}2 dy .12/

and provides a more robust alternative. Gneiting and Raftery (2006) gave an alternative repre-
sentation and showed that

crps.F , x/=EF |X−x|− 1
2 EF |X−X′|, .13/

where X and X′ are independent copies of a random variable with CDF F and finite first
moment. The representation (13) is particularly convenient when F is represented by a sam-
ple, possibly based on Markov chain Monte Carlo output or forecast ensembles (Gschlößl and
Czado, 2005). Furthermore, the representation shows that the continuous ranked probability
score generalizes the absolute error, to which it reduces if F is a point forecast. It is reported in
the same unit as the observations. The continuous ranked probability score is proper, and we
rank competing forecast procedures on the basis of its average,

CRPS= 1
T

T∑
t=1

crps .Ft , xt/=
∫ ∞

−∞
BS.y/ dy, .14/

where

BS.y/= 1
T

T∑
t=1

{Ft.y/−1.xt �y/}2

denotes the Brier (1950) score for probability forecasts of the binary event at the threshold value
y∈R. Like all proper scoring rules for binary probability forecasts, the Brier score allows for the
distinction of a calibration component and a refinement component (Murphy, 1972; DeGroot
and Fienberg, 1983; Dawid, 1986). Candille and Talagrand (2005) discussed calibration–sharp-
ness decompositions of the continuous ranked probability score.

Table 5 shows the logarithmic score and the continuous ranked probability score for the
various forecasters in our initial simulation study, averaged over the 10000 replicates of the pre-
diction experiment. As expected, both scoring rules rank the ideal forecaster highest, followed
by Hamill’s, the unfocused and the climatological forecaster. Fig. 3 plots the Brier score for the
associated binary forecasts in dependence on the threshold value, illustrating the integral repre-
sentation on the right-hand side of equation (14). This type of display was proposed by Gerds
(2002), section 2.3, and Schumacher et al. (2003), who called the graphs prediction error curves.

4. Case-study: probabilistic forecasts at the Stateline wind energy centre

Wind power is the fastest growing source of energy today. Estimates are that within the next
15 years wind energy will fill about 6% of the electricity supply in the USA. In Denmark, wind
energy already meets 20% of the country’s total energy needs. However, arguments against the
proliferation of wind energy have been put forth, often focusing on the perceived inability to
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Table 5. Average logarithmic score LogS and
continuous ranked probability score CRPS in the
simulation study

Forecaster LogS CRPS

Ideal 1.41 0.56
Climatological 1.75 0.78
Unfocused 1.53 0.63
Hamill’s 1.52 0.61
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Fig. 3. Brier score plot for the ideal forecaster ( ), climatological forecaster (- - - - - - -), unfocused fore-
caster (� - � - � -) and Hamill’s forecaster (– – –): the curves show the Brier score as a function of the threshold
value; the area under each forecaster’s curve equals the CRPS value (14)

forecast wind resources with any degree of accuracy. The development of advanced probabilistic
forecast methodologies helps to address these concerns.

The prevalent approach to short-range forecasts of wind speed and wind power at prediction
horizons up to a few hours is based on on-site observations and autoregressive time series mod-
els (Brown et al., 1984). Gneiting et al. (2004) proposed a novel spatiotemporal approach, the
regime-switching space–time (RST) method, that merges meteorological and statistical expertise
to obtain fully probabilistic forecasts of wind resources. Henceforth, we illustrate our diagnostic
approach to the evaluation of predictive performance by a comparison and ranking of three
competing methodologies for 2-hour-ahead forecasts of hourly average wind speed at the State-
line wind energy centre. The evaluation period is May–November 2003, resulting in a total of
5136 probabilistic forecasts.

4.1. Predictive distributions for hourly average wind speed
We consider three competing statistical prediction algorithms for 2-hour-ahead probabilistic
forecasts of hourly average wind speed wt at the Stateline wind energy centre. Stateline is located
on the Vansycle ridge at the border between the states of Oregon and Washington in the US
Pacific Northwest. The data source is described in Gneiting et al. (2004).
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Table 6. Empirical coverage of central pre-
diction intervals†

Forecast Empirical coverage for
the following intervals:

50% 90%

Persistence 50.9 89.2
Autoregressive 55.6 90.4
RST 51.2 88.4

†The nominal coverage is 50% and 90%.

The first method is the persistence forecast, a naïve yet surprisingly skilful, non-parametric ref-
erence forecast. The persistence point forecast is simply the most recent observed value of hourly
average wind speed at Stateline. To obtain a predictive distribution, we dress the point forecast
with the 19 most recent observed values of the persistence error, similarly to the approach that
was proposed by Roulston and Smith (2003). Specifically, the predictive CDF for wt+2 is the
empirical distribution function of the set

{max.wt −wt−h +wt−h−2, 0/ : h=0, . . . , 18}:

The second technique is the autoregressive time series approach, which was proposed by Brown
et al. (1984) and has found widespread use since. To apply this technique, we fit and extract
a diurnal trend component based on a sliding 40-day training period, fit a stationary auto-
regression to the residual component and find a Gaussian predictive distribution in the customary
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Fig. 8. Empirical CDF of hourly average wind speed at the Stateline wind energy centre in May–November
2003, in metres per second

way. The predictive distribution assigns a typically small positive mass to the negative half-axis,
and, in view of the non-negativity of the predictand, we redistribute this mass to wind speed 0.
The details are described in Gneiting et al. (2004), where the method is referred to as the AR-D
technique.

The third method is the RST approach of Gneiting et al. (2004). The RST model is parsi-
monious yet takes account of all the salient features of wind speed: alternating atmospheric
regimes, temporal and spatial autocorrelation, diurnal and seasonal non-stationarity, condi-
tional heteroscedasticity and non-Gaussianity. The method uses off-site information from the
nearby meteorological towers at Goodnoe Hills and Kennewick, identifies atmospheric regimes
and fits conditional predictive models for each regime, based on a sliding 45-day training period.
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Fig. 9. Sharpness diagram for persistence (PS), autoregressive (AR) and RST forecasts of hourly average
wind speed at the Stateline wind energy centre: the box plots show the fifth, 25th, 50th, 75th and 95th per-
centiles of the width of the central prediction interval, in metres per second; the smaller the width, the sharper
(the nominal coverage is 50% (left) and 90% (right))

Table 7. Average width of central prediction intervals†

Forecast Average widths (m s−1) for
the following intervals:

50% 90%

Persistence 2.63 7.51
Autoregressive 2.74 6.55
RST 2.20 5.31

†The nominal coverage is 50% and 90%.

Details can be found in Gneiting et al. (2004), where the method is referred to as the RST-D-CH
technique. Any minor discrepancies in the results that are reported below and in Gneiting et al.
(2004) stem from the use of R rather than S-PLUS and differences in optimization routines.

4.2. Assessing calibration
Figs 4–6 show the PIT histograms for the three forecast techniques, along with the sample auto-
correlation functions for the first three centred moments of the PIT values and the respective
Bartlett confidence intervals. The PIT histograms for the persistence and RST forecasts appear



262 T. Gneiting, F. Balabdaoui and A. E. Raftery

Table 8. CRPS value (14) for probabilistic forecasts of hourly average wind speed at the Stateline wind
energy centre in March–November 2003, month by month and for the entire evaluation period

Forecast CRPS (m s−1) for the following months:

May June July August September October November March–November

Persistence 1.16 1.08 1.29 1.21 1.20 1.29 1.16 1.20
Autoregressive 1.12 1.02 1.10 1.11 1.11 1.22 1.13 1.12
RST 0.96 0.85 0.95 0.95 0.97 1.08 1.00 0.97

Table 9. Mean absolute error MAE for point forecasts of hourly average wind speed at the Stateline wind
energy centre in March–November 2003, month by month and for the entire evaluation period

Forecast MAE (m s−1) for the following months:

May June July August September October November March–November

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51 1.61
Autoregressive 1.53 1.38 1.50 1.54 1.53 1.68 1.54 1.53
RST 1.32 1.18 1.33 1.31 1.36 1.48 1.37 1.34

uniform. The histogram for the autoregressive forecasts is hump shaped, thereby suggesting
departures from probabilistic calibration. Table 6 shows the empirical coverage of central pre-
diction intervals for the aforementioned evaluation period.

The PIT values for ideal two-step-ahead forecasts are at most 1 dependent, and the sample
autocorrelation functions for the RST forecasts seem compatible with this assumption. The
sample autocorrelations for the persistence forecasts were non-negligible at lag 2, and the cen-
tred second moment showed notable negative correlations at lags between 15 and 20 h. These
features indicate a lack of fit of the predictive model, even though they seem difficult to inter-
pret diagnostically. The respective sample autocorrelations for the autoregressive forecast were
positive and non-negligible at lags up to 5 h, suggesting conditional heteroscedasticity in the
wind speed series. Indeed, Gneiting et al. (2004) showed that the autoregressive forecasts improve
when a conditionally heteroscedastic model is employed. In the current classical autoregressive
formulation the predictive variance varies as a result of the sliding training period, but high
frequency changes in predictability are not taken into account.

Fig. 7 shows marginal calibration plots for the three forecasts, both in terms of CDFs and in
terms of quantiles. The graphs show the differentials (10) and (11) and point to non-negligible
excursions from 0, particularly at small wind speeds and for the autoregressive forecast. The
lack of predictive model fit finds an explanation in Fig. 8, which shows the empirical CDF F̄ T

of hourly average wind speed. Hourly average wind speeds less than 1 m s−1 were almost never
observed, even though the predictive distributions assign positive point mass to wind speed 0.

4.3. Assessing sharpness
The sharpness diagram in Fig. 9 shows box plots that illustrate the width of central prediction
intervals for the 5136 predictive distributions in the evaluation period, May–November 2003.
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The prediction intervals for the persistence forecast varied the most in width, followed by the
RST and autoregressive forecasts. Table 7 shows the respective average widths. The RST method
was by far the sharpest, with prediction intervals that were about 20% shorter on average than
those for the autoregressive technique.

4.4. Continuous ranked probability score
Table 8 shows the CRPS value (14) for the various techniques. We report the scores month by
month, which allows for an assessment of seasonal effects and straightforward tests of the null
hypothesis of no difference in predictive performance. For instance, the RST method showed
lower CRPS than the autoregressive technique in each month during the evaluation period.
Under the null hypothesis of equal predictive performance this happens with probability

( 1
2

)7 =
1=128 only. Similarly, the autoregressive technique outperformed the persistence method in
May–October, but not in November. Various other tests can be employed, but care needs to
be taken to avoid dependences in the forecast differentials. Here, the results for distinct months
can be considered independent for all practical purposes. Diebold and Mariano (1995) gave a
thoughtful discussion of these issues, and we refer to their work for a comprehensive account
of tests of predictive performance. Fig. 10 illustrates the Brier score decomposition (14) of the
CRPS value for the entire evaluation period. The RST method outperformed the other tech-
niques at all thresholds.

We noted in Section 3.4 that the continuous ranked probability score generalizes the abso-
lute error and reduces to it for point forecasts. Table 9 shows the respective mean absolute error
MAE for the persistence, autoregressive and RST point forecasts. The persistence point forecast
is the most recent observed value of hourly average wind speed at Vansycle. The autoregressive
point forecast is the mean of the respective predictive distribution, and similarly for the RST
forecast. The RST method had the lowest MAE, followed by the autoregressive and persistence
techniques. The MAE- and CRPS-values are reported in the same units as the wind speed obser-
vations, i.e. in metres per second, and can be directly compared. The insights that the monthly
scores provide are indicative of the potential benefits of thoughtful stratification.
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Fig. 10. Brier score plot for persistence forecasts (- - - - - - -), autoregressive forecast (� - � - � -) and RST fore-
casts ( ) of hourly average wind speed at the Stateline wind energy centre, in metres per second: the
graphs show the Brier score as a function of the threshold value; the area under each forecast’s curve equals
the CRPS value (14)
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The CRPS- and MAE-values establish a clear-cut ranking of the forecast methodologies that
places the RST method first, followed by the autoregressive and persistence techniques. The
RST method also performed best in terms of probabilistic and marginal calibration, and the
RST forecasts were by far the sharpest. The diagnostic approach points at forecast deficiencies
and suggests potential improvements to the predictive models. In particular, the marginal cal-
ibration plots in Fig. 7 suggest a modified version of the RST technique that uses truncated
normal rather than cut-off normal predictive distributions. This modification yields small but
consistent improvements in predictive performance (Gneiting et al., 2006).

5. Discussion

Our paper addressed the important issue of evaluating predictive performance for probabilistic
forecasts of continuous variables. Following the lead of Dawid (1984) and Diebold et al. (1998),
predictive distributions have traditionally been evaluated by checking the uniformity of the PIT.
Here we have introduced the pragmatic and flexible paradigm of maximizing the sharpness of
the predictive distributions subject to calibration. Calibration refers to the statistical consistency
between the predictive distributions and the associated observations, and is a joint property
of the predictions and the values that materialize. Sharpness refers to the concentration of the
predictive distributions and is a property of the forecasts only.

We interpreted probabilistic forecasting within a simple theoretical framework that allowed
us to distinguish probabilistic, exceedance and marginal calibration, and that lends support to
the use of diagnostic tools in evaluating and comparing probabilistic forecasters. Probabilistic
calibration corresponds to the uniformity of the PIT values, and the PIT histogram remains a
key tool in the diagnostic approach to forecast evaluation. In addition, we proposed the use of
marginal calibration plots, sharpness diagrams and proper scoring rules, which form powerful
tools for learning about forecast deficiencies and ranking competing forecast methodologies.
Our own applied work on probabilistic forecasting has benefited immensely from these tools, as
documented in Section 4 and in the partial applications in Gneiting et al. (2004), Raftery et al.
(2005) and Gneiting et al. (2005). Predictive distributions can be reduced to point forecasts, or
to probability forecasts of binary events, and the associated forecasts can be assessed by using
the diagnostic devices that were described by Murphy et al. (1989) and Murphy and Winkler
(1992), among others.

If we were to reduce our conclusions to a single recommendation, we would close with a
call for the assessment of sharpness, particularly when the goal is that of ranking. Previous
comparative studies of the predictive performance of probabilistic forecasts have focused on
calibration. For instance, Moyeed and Papritz (2002) compared spatial prediction techniques,
Clements and Smith (2000) and Boero and Marrocu (2004) evaluated linear and non-linear time
series models, Garratt et al. (2003) assessed macroeconomic forecast models and Bauwens et al.
(2004) studied the predictive performance of financial duration models. In each of these works,
the assessment was based on the predictive performance of the associated point forecasts, and
on the uniformity of the PIT values. We contend that comparative studies of these types call
for routine assessments of sharpness, in the form of sharpness diagrams and through the use of
proper scoring rules.

Despite the frequentist flavour of our diagnostic approach, calibration and sharpness are
properties that are relevant to Bayesian forecasters as well. Rubin (1984), pages 1161 and 1160,
argued that

‘the probabilities attached to Bayesian statements do have frequency interpretations that tie the state-
ments to verifiable real world events’.
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Consequently, a

‘Bayesian is calibrated if his probability statements have their asserted coverage in repeated experience’.

Gelman et al. (1996) developed Rubin’s posterior predictive approach, proposed posterior pre-
dictive checks as Bayesian counterparts to the classical tests for goodness of fit and advo-
cated their use in judging the fit of Bayesian models. This relates to our diagnostic approach,
which emphasizes the need for understanding the ways in which predictive distributions fail
or succeed. Indeed, the diagnostic devices that are posited herein form powerful tools for
Bayesian as well as frequentist model diagnostics and model choice. Tools such as the PIT
histogram, marginal calibration plots, sharpness diagrams and proper scoring rules are widely
applicable, since they are non-parametric, do not depend on nested models, allow for structural
change and apply to predictive distributions that are represented by samples, as they arise in
a rapidly growing number of Markov chain Monte Carlo methodologies and ensemble pre-
diction systems. In the time series context, the predictive framework is natural and model fit
can be assessed through the performance of the time forward predictive distributions (Smith,
1985; Shephard, 1994; Frühwirth-Schnatter, 1996). In other types of situations, cross-validatory
approaches can often be applied fruitfully (Dawid (1984), page 288, and Gneiting and Raftery
(2006)).
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Appendix A

A.1. Proof of theorem 1
Consider the random variable U =F.x1/

z1 F.x2/
z2 . . .F.xT /zT where x1 ∼G1, . . . , xT ∼GT and .z1, . . . , zT /′

is multinomial with a single trial and equal probabilities. The finite probabilistic calibration condition
implies that U is uniformly distributed. By the variance decomposition formula,

var.F/=var{F−1.U/}
=E[var{F−1.U/|z1, . . . , zT }]+var[E{F−1.U/|z1, . . . , zT }]:

The first term in the decomposition equals

1
T

T∑
t=1

var.xt/= 1
T

T∑
t=1

var.Gt/,

and the second term is non-negative and vanishes if and only if E.G1/= . . .=E.GT /.
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A.2. Proof of theorem 2
For p ∈ .0, 1/ and t = 1, 2, . . . , put Yt = 1.pt < p/ − Gt ◦ F−1

t .p/ and note that E.Yt/ = 0. By theorem 2 of
Blum et al. (1963),

lim
T→∞

(
1
T

T∑
t=1

Yt

)
= lim

T→∞

[
1
T

T∑
t=1

{
1.pt <p/−Gt ◦F−1

t .p/
}]

=0

almost surely. The uniqueness of the limit implies that condition (6) is equivalent to the probabilistic calib-
ration condition (3).

A.3. Proof of theorem 3
For x∈R let q= F̄ .x/, and for t =1, 2, . . . put qt = F̄ .xt/. Then

ĜT .x/= 1
T

T∑
t=1

1.xt �x/= 1
T

T∑
t=1

1.qt �q/:

By theorem 2 with Ft = F̄ for t =1, 2, . . . , we have that

1
T

T∑
t=1

1.qt �q/→q almost surely

if and only if

1
T

T∑
t=1

Gt ◦ F̄
−1

.q/→q almost surely:

Hence, marginal calibration is equivalent to condition (9).
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